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produced will be randomly distributed inside the
crystal. When the faults are able to arrange themselves
in a regular fashion, a well ordered polytype is pro-
duced; otherwise they are retained as faults in the
structure and manifest themselves as streaks between
reflections on the X-ray photographs.

In the dendrites grown in an argon atmosphere
using analar grade Cdl,, some higher polytypes were
observed and the streaking, too, was observed in 9%
of cases (Kumar & Trigunayat, 1990). Both higher
polytypes and streaking were eliminated when the
charge material was well purified by zone refining
and the argon atmosphere was replaced by vacuum.
Now, when Pb ions are introduced in the CdlI, struc-
ture as impurities, both polytype formation and
streaking are again observed. This clearly establishes
the role of impurities, including lead, in the formation
of polytypes in CdlI, crystals.

Arcing of the reflections arises from the arrange-
ment of edge dislocations into small-angle tilt boun-
daries. Like streaking, it has been observed in just
7% of cases in the present work which means that
the density of the dislocations produced in the struc-
ture was low.

In the earlier work it was found that the melt-grown
CdI; crystals doped with Pbl, unusually required long
exposure time (~8-10h) to produce well exposed
X-ray photographs compared with the usual exposure
time of nearly 1h for the undoped CdI, crystals
(Tyagi & Trigunayat, 1988). It was argued that when
the large-sized Pb>* and 1~ ions (ionic radii 1-20 and
2-16 A, respectively) occupy the vacant octahedral
voids present in the CdI, structure, local displace-
ments are produced which lead to weakening of the
X-ray reflections (Vainshtein, Fridkin & Indembom,
1982). However, in the present case of Pbl,-doped
dendritic crystals, the time required for producing
well exposed X-ray photographs was the same as for
the undoped CdI, dendritic crystals, viz about 1 h. It
follows that no such local displacements are produced
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in the present vapour-grown dendritic crystals, the
reason for which may be the following. In the melt
growth, when the melt solidifies in the growth cham-
ber, the substituted Cd*>* ions and the liberated 1~
ions cannot escape and are therefore compelled to
accommodate themselves at suitable positions in the
host structure. This enfored entry of the large I ions
(ionic radius = 2-16 A) causes excessive local distor-
tions and hence large local displacements in the struc-
ture. No such constraints exist in vapour growth, so
the I ions are free to escape into the surroundings.
They may also combine with the substituted Cd**
ions to form CdIl, molecules, which may deposit
elsewhere in the growth chamber.

One of us (BK) expresses his gratitude to S. Mehdi
and K. Singh for helpful discussions. He is indebted
to the University Grants Commission, India, for
financial support.
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Abstract

The frozen phonon technique is introduced as a
means of including the effects of thermal vibrations
in multislice calculations of CBED patterns. This

0108-7673/91/030267-12$03.00

technique produces a thermal diffuse background,
Kikuchi bands and a Debye-Waller factor, all of
which are neglected in the standard multislice calcula-
tion. The frozen phonon calculations match experi-
mental silicon (100) CBED patterns for specimen
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thicknesses of up to at least 550 A. The best-fit silicon
r.m.s. vibration amplitude at near room temperature
was determined to be 0-085(5) A. As an independent
check of validity, a comparison of calculated CBED,
experimental CBED and electron energy loss spec-
troscopy (EELS) data was also performed. The frozen
phonon technique provides an improved theoretical
basis for the simulation of CBED and therefore
annular dark field scanning transmission electron
microscope imaging.

(1) Introduction

Convergent-beam electron diffraction (CBED) is
widely used for microcharacterization (Steeds, 1983;
Eades, 1988). The most common application is to
identify known structures and their orientations, but
CBED has also been used to determine accurate
unit-cell dimensions (Jones, Rackham & Steeds,
1977), structure symmetries (Goodman, 1975;
Tanaka, Saito & Sekii, 1983) and even atomic posi-
tions (Vincent, Bird & Steeds, 1984). Strain fields
around defects (Fung, 1985; Carpenter & Spence,
1982), specimen thicknesses (Kelly, Jostsons, Blake
& Napier, 1975; Kirkland, Loane, Xu & Silcox, 1989),
ionicity (Zuo, Spence & O’Keeffe, 1988) and the
phase of complex atomic structure factors (Zuo,
Spence & Hgier, 1989; Bird, James & Preston, 1987)
have also been determined.

The sum of the large-angle scattering in the CBED
pattern produces the annular dark field (ADF) scan-
ning transmission electron microscope (STEM)
image (Langmore, Wall & Isaacson, 1973), which has
recently proven capable of resolving atomic structures
with Z contrast (Pennycook, 1989; Pennycook,
Jesson & Chisholm, 1990) at better than 2 A reso-
lution (Xu, Kirkland, Silcox & Keyse, 1990; Shin,
Kirkland & Silcox, 1989). Three major features of the
large-angle scattering are Kikuchi bands (Kikuchi,
1928; Kainuma, 1955; Takagi, 1958), a thermal diffuse
scattering (TDS) background (Hall & Hirsch, 1965)
and a higher-order Laue zone (HOLZ) ring (Hirsch,
Howie, Nicholson, Pashley & Whelan, 1977). Ther-
mal vibrations generate the first two features and
reduce the intensity of the third by a Debye-Waller
factor (Debye, 1914). Since the intensity in the HOLZ
ring may be a significant fraction of the ADF STEM
signal (Spence, Zuo & Lynch, 1989), the signal may
be sensitive to thermal vibration. There are sugges-
tions that thermal vibrations can change the relative
contrast of different elements in the ADF STEM
signal (Wang & Cowley, 1989), which differs from
the suggestion that the signal is simply related to the
atomic cross sections (Pennycook & Jesson, 1990).
Accordingly, understanding the effects of thermal
vibrations seems necessary for correct interpretation
of experimental images. Our previous work on simu-
lating ADF STEM images (Kirkland, Loane & Silcox,
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1987; Loane, Kirkland & Silcox, 1988) did not include
the effects of thermal vibrations. This paper presents
an investigation of the effects of thermal vibrations
in CBED as a first step toward exploring the effects
in ADF STEM.

Recently, thermal vibrations have been included in
multislice calculations by assuming that the vibrations
can be averaged to create an effective TDS potential
(Wang & Cowley, 1989). In this case, both the elastic
and the TDS potentials remain periodic and therefore
only scattering at Bragg angles is permitted.
Apparently, this technique does not produce a TDS
background throughout reciprocal space unless ad
hoc random phases are introduced.

A beautiful demonstration of the formation of
Kikuchi bands by elastic scattering of highly localized
inelastic events has been presented (Fan, 1989). In
this multislice calculation, the elastic and inelastic
wavefunctions are propagated independently through
the crystal and then summed incoherently on the
detector plane. However, this calculation does not
explicitly include the generation of additional inelas-
tic waves throughout the thickness of the crystal.

It is possible to include thermal vibrations in multi-
slice calculations such that TDS, Kikuchi bands and
a Debye-Waller factor arise naturally. The basic
approximation is that the electron/atom interaction
occurs so rapidly that the atom may be considered
stationary, i.e. the electron sees a snapshot of the
atom frozen in mid-vibration. Each atom in the simu-
lated specimen is offset by a small random displace-
ment, typical of its vibration amplitude, and a stan-
dard multislice calculation is performed. Each set of
random displacements freezes one phonon configu-
ration into the specimen. The calculation is then
repeated and averaged (incoherently) over an
ensemble of different phonon configurations. This
technique is essentially a Monte Carlo integration
over phonon configuration space, as discussed below.

(2) Frozen phonon approximation

Atomic vibration periods are on the order of 10735
(Sinha, 1973; Mitra & Massa, 1982). The large-ampli-
tude acoustic waves, which produce most of the
atomic displacement, are many times slower. Classi-
cally, a 100 keV electron is a point particle traveling
at half the speed of light, 1-5x10'® g s~'. If the elec-
tron/atom interaction is limited to within a few
angstroms of the atomic nucleus, the interaction time
is ~107* vibration periods. In reality, the electron
wavefunction is unlocalized along its direction of
travel due to a small spread in the time of emission.
The length of the wavepacket can be estimated with
Heisenberg’s uncertainty principle: AE At=h/2.
Assuming a 0-25 eV coherent energy spread for a field
emission tip, the emission time is ~2x107'%s, the
wavepacket length is ~3x10° A and the interaction
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time is ~2 X 1072 vibration periods. Whether the elec-
tron is treated classically or quantum mechanically,
the electron/atom interaction is much shorter than
the atomic vibration period and the vibrating atoms
may be considered as frozen in place.

STEM beam currents are on the order of 10'%es™,
so the average time between successive electrons pass-
ing through the specimen is about 10* atomic vibra-
tion periods. This delay is sufficiently large that the
atomic displacements seen by successive electrons are
essentially uncorrelated. The physical process of
accumulating an experimental CBED pattern from
millions of electrons, each of which has been scattered
by an independent phonon configuration, can be con-
sidered as a Monte Carlo integration. This treatment
includes Bragg scattering and quasi-elastic phonon
scattering but not inelastic scattering.

The electron/specimen interaction can be
described by an N+1 particle wavefunction,
¥ (k,u,,), where k is a three-dimensional electron
wavevector and u,,, is a 3 N-dimensional vector denot-
ing the displacement of N atoms from their lattice
sites. The joint probability distribution for finding the
electron at k and the atoms at u,,, is then | ¥ (k, u,,,)|’.
By definition, this joint probability is the product of
the probability of finding the electron at k given the
atoms are at u,, P.(k|u,,) and the probability that
the atoms are at u,,, P,(u,). Allowing for arbitrary
atomic displacements, the probability distribution for
the electron (i.e. the electron intensity), I, is given by

I(k):IdutotPe(klutol)Pa(“lol)' (1)

Various phonon dynamics models can be used to
determine P,(u,,). Multislice calculations can be
used to determine P.(k|u,,). Evaluation of the elec-
tron intensity after the specimen yields the CBED
pattern. This 3 N-dimensional integral over all pos-
sible phonon configurations is far too large to be
calculated explicitly but a solution can be determined
to any degree of accuracy with Monte Carlo
integration.

In principle, each atomic displacement arises from
the vector sum of 3N normal modes of vibration
evaluated at the atom site (Born & von Karman, 1913;
Willis & Pryor, 1975). Since the long-wavelength
acoustic modes tend to have larger vibration ampli-
tudes, the atomic displacements for neighboring
atoms are slightly correlated. To find the correct
atomic displacements, it is necessary to determine the
amplitude, phase and polarization vector for each of
the 3N normal modes and then sum them at each of
the N lattice sites. In general, the effort required to
determine these quantities is tremendous and for the
present the simpler Einstein model has been used.

In the Einstein (1907) model, each component of
every atomic displacement vector is an independent
simple harmonic oscillator (SHO) and all the dis-
placements are uncorrelated with each other. The
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energy eigenstate wavefunctions for the SHO, ¢,, as
a function of displacement, u, are well known
(Sakurai, 1985). By using Planck statistics (Reif, 1965)
to determine the occupancy of each of the energy
eigenstates, the probability distribution, P,, for each
SHO displacement as a function of temperature, T,
is given by

S exp[—(n+3ho/ksTlon(u)
P(u T)="=

T exp [~(n+Yho/ksT]
n=0

, (2)

where w is the oscillator frequency. Substituting in
the explicit form for the energy eigenstates and sim-
plifying, one obtains a Gaussian,

P,(u, T) =[(wm/ mh) tanh (fw/2kpT)]"/?
x exp [—(wm/h)u® tanh (hw/2ksT)], (3)

where m is the oscillator mass. The Gaussian standard
deviation is the r.m.s. atomic displacement, u, .,
along each component of the 3D displacement vector,

Ue ems = [(A/20m) coth (hw/2kgT)]?  (4)

and is often referred to as the vibration amplitude in
this paper. The same distribution may be derived from
other considerations (Maradudin, Montroll, Weiss &
Ipatova, 1971). Experimental r.m.s. atomic displace-
ment values are available in the literature for a limited
selection of materials and temperatures ( International
Tables for X-ray Crystallography, 1974a).

The Einstein model was originally used to describe
diamond, a monatomic crystal. In multiatomic crys-
tals, it is not clear how the r.m.s. atomic displacements
for the different atoms are related. Since each atom
is treated as an independent SHO, the oscillation
frequencies in (4) could possibly be different for each
site in the crystal. To resolve this issue exactly, one
must resort to the more-sophisticated theories where
the atomic vibrations are the sum of 3N normal
modes. Unfortunately, no simple mass dependence
can be extracted. The magnitude of the atomic dis-
placement for the different atom types is different for
the different normal modes and the relative ampli-
tudes of the normal modes vary with temperature.

The Einstein model approximates the complicated
phonon frequency spectrum as a constant for all
wavevectors. We apply this same approximation to
multiatomic crystals. Since the frequency of oscilla-
tion is constant, then by (4) the atomic displacements
are proportional to 1/m}’? where m; is the atomic
mass of the atom at the ith site in the crystal. This
approximation is no worse than the original Einstein
approximation. A more accurate mass dependence
may be found if the relative amplitudes of the different
atom types are left as free parameters to be deter-
mined from the experimental data. In this paper, the
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distribution of the atomic displacements will be
assumed to be a Gaussian with a r.m.s. displacement
proportional to 1/m}’>.

Pl(ui, T) = exp [ —%(ui/ Uy rmsi)Z]/(z"rui r'msi)l/z’
Urrmsi = A( T)/ml!/zy

where A is a characteristic vibration amplitude.
Except for simple systems (such as silicon) we lack
experimental values for A and it must be determined
experimentally.

We define a phonon configuration as the entire set
of all the random atomic displacements as shown
schematically in Fig. 1. Since the atomic displace-
ments are uncorrelated, the probability distribution
for phonon configurations is the product of all the
probability distributions for all the individual atomic
displacements. The probability that the atom posi-
tions are u,, is then

(5)

P,(uy)
N
= H H exP [_%(ujl’/uxrmsi)z]/(z"ruirmsi),/z’
i=1 j=xyz

(6)

where the j subscript denotes the three components
of each atomic displacement vector.

(3) Frozen phonon zlgorithm

Monte Carlo integration is performed by averaging
an ensemble of values of the integrand evaluated at
a uniform random sampling of positions in the
integration volume. The sampling is increased until
the integral converges to the desired level of accuracy.
The smoother the integrand is over the integration
volume, the faster the convergence.

We must evaluate the integrand of (1),
P.(k|uy,) P.(u,,), at random positions in the 3N-
dimensional volume of u,,, space. A uniform sampling
of u,, space would produce many positions far out
in the tails of the Gaussian, P,(u,,), which make
small contributions to the integral. A more-efficient
calculation is achieved by using P,(u,,) as the proba-
bility distribution for the sampling positions in u,

¢® 8 g e
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S g®p e g
Fig. 1. Schematic diagram of one frozen phonon configuration.
All the atoms (solid circles) are frozen in mid-vibration at small
displacements from their atomic sites (open circles). Other

phonon configurations would have the atoms frozen at different
random displacements.
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space and then evaluating only P.(k|u,,) at those
positions. In this case, each position contributes
equally to the integral; there are just fewer positions
located out in the tails of the Gaussian. Changing the
distribution of sampling positions is a standard Monte
Carlo procedure (Press, Flannery, Teukolsky &
Vetterling, 1986) and corresponds to a change of
variables in the integral.

The frozen phonon algorithm is as follows: First,
all the atoms in the simulated specimen are offset by
random displacements as determined by the probabil-
ity distribution, P,(u,,), to create one phonon
configuration. Second, a multislice calculation is per-
formed to determine the CBED pattern, P,(k|u,,),
for that phonon configuration. These two steps are
repeated and the CBED patterns are averaged over
an ensemble of configurations until the desired level
of accuracy is reached. A natural consequence of
explicitly calculating the scattering from each phonon
configuration is the inclusion of muitiple elastic and
TDS scattering to all orders.

A CBED multislice calculation begins with the
generation of an incident wavefunction on the
entrance surface of the specimen. In this paper the
Bragg discs do not overlap and the incident probe
width is broad compared to the interatomic spacings.
Therefore, the incident-probe position is irrelevant
and will be assumed to lie at the origin. Then the
probe is evolved through the specimen with the multi-
slice algorithm which involves repeated scattering
from a slice of atoms and propagation to the next
slice. The essential relationship (Loane, Kirkland &
Silcox, 1988) is given by

i1 (x) = L(x)[¢:(x) ® p(x)], (M

where ; is the electron wavefunction before the ith
slice, ¢, is the ith slice transmission function and p is
the propagator function. This multislice algorithm
has been described in detail elsewhere (Cowley &
Moodie, 1957; Goodman & Moodie, 1974; Ishizuka
& Uyeda, 1977; Kirkland, Loane & Silcox, 1987;
Loane, Kirkland & Silcox, 1988). The intensity of the
outgoing wavefunction (as a function of wavevector)
from the final slice is the CBED pattern. The CBED
multislice calculation is valid for relatively thick
specimens and includes the effects of dynamical
diffraction, channeling, scattering to fractional Bragg
angles, HOLZ scattering and arbitrary specimen
structure, provided that sufficient computer resources
are available.

The simulated specimen is composed of a stack of
slice transmission functions (slices), each of which
represents a single layer of atoms. At first glance, the
frozen phonon technique appears to require the calcu-
lation of a multitude of different slices to describe all
the atomic displacements in the ensemble of specimen
phonon configurations. However, a shortcut is pos-
sible within the Einstein approximation. Since the
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random atomic displacements in one unit cell do not
depend on the random displacements in any other
unit cell, rearranging the unit ceils produces a
different but equally valid phonon configuration.
Randomly reordering unit cells enables a few slices
to appear as many different phonon configurations.
In reality, normal modes of vibration extend
throughout the entire specimen and unit cells cannot
be reordered without destroying the correlations
caused by long-wavelength phonons. Within the Ein-
stein approximation the atomic vibrations are uncor-
related, the shortcut is valid and any real correlations
are neglected.

In CBED multislice calculations, the slice trans-
mission functions must contain many unit cells to
determine the scattering at fractional Bragg angles.
If the slice is shifted horizontally by an integral num-
ber of unit cells, the electron wavefunction encounters
a different set of random atomic displacements and
the same slice appears to be a new slice with a different
phonon configuration. Different random stacking
sequences and random horizontal shifts produce
different phonon configurations. The number of slices
required to represent adequately the entire ensemble
of phonon configurations increases as the number of
unit cells per slice decreases. The validity of this
shortcut is easily tested by increasing the number of
slices used until the results converge to the desired
level of accuracy.

Given a random number generator (Press, Flan-
nery, Teukolsky & Vetterling, 1986) the shortcut
modification to the multislice algorithm of (7) is
trivial.

Yisai(X) = q(x"na_mb)[¢i(x)®P(x)], (8)

where j, n and m are random integers and a and b
are crystal lattice vectors perpendicular to the beam.
The j random number selects a slice from a set of
many ith slices which differ only by their random
atomic displacements. Then the n and m random
numbers determine the number of unit cells the slice
is shifted horizontally.

CBED patterns and the frozen phonon approxima-
tion are described in terms of the electron wavevector,
k. An equivalent form of the frozen phonon algorithm
can be written in terms of k by Fourier transform-
ing (8).

¥,.1(k) =[T;(k) exp [-27ik . (na+ mb)]

®[¥i(k) P(k)], )

where the upper-case functions in (9) represent the
Fourier transforms of the corresponding lower-case
functions in (8). Thus, the horizontal shift of the slice
transmission functions can be accomplished in
reciprocal space by multiplication with a phase factor
which is easier to implement numerically.
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No modification of the slice transmission function
generation is necessary but the atom position inputs
must be changed to include the random atomic vibra-
tion displacements. Given a characteristic vibration
amplitude, (5) dictates the standard deviation of the
Gaussian displacement distribution for each atom in
the slice. A Gaussian random number (Press, Flan-
nery, Teukolsky & Vetterling, 1986) is added to each
component of every atomic position and then the
slice transmission function is calculated normally
(Loane, Kirkland & Silcox, 1988). We still calculate
our slices from X-ray scattering factors ( International
Tables for X-ray Crystallography, 1974b) instead of
electron scattering factors (Doyle & Turner, 1967)
because the Mott (1930) formula ensures the correct
asymptotic form for high-angle scattering.

Within the Einstein approximation, the atomic dis-
placements can be broken up into independent com-
ponents and considered individually. For 100 keV
electrons, the scattering is insensitive to small atomic
displacements along the optical axis (z axis). The z
component of thermal vibration gives rise to TDS
and a Debye-Waller factor along k., just as the x
(and y) components do along k, (and k,). As shown
below, the effects of vibration increase with k, and
are extremely small for k, <0-5 A", Since the scatter-
ing vector has a small k, component, even for the
HOLZ scattering (k, <0-2 A™Y), the z displacement
component has little effect. Only the projection of the
atomic potentials along the z axis is used to create
multislice slice transmission functions. The z dis-
placement component is lost in this projection. The
slice transmission functions and therefore the entire
calculation only contain atomic displacements along
x and y.

(4) Calculation parameters and sampling

The primary concern when performing a frozen
phonon calculation is whether enough phonon
configurations have been averaged to represent the
ensemble adequately. Fig. 2 shows a series of CBED
patterns calculated with increasing number of phonon
configurations. If too few configurations are used, the
intensity distribution of the CBED pattern contains
too much random noise to provide much meaningful
information. Good results can be achieved with just
16 phonon configurations.

In some cases, the symmetry in the CBED pattern
can be used to reduce the random variation. For
example, the CBED patterns in Fig. 2 could be (but
were not) added to their four (116) plane mirror
images, doubling their signal-to-noise ratios. Such an
approach has the danger of forcing an incorrect sym-
metry on the pattern.

All CBED patterns displayed in this paper
have been logarithmically transformed in order to
bring out their low-intensity features. The intensity
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Table 1. The resolution and extent in real and

reciprocal space of the calculation are determined by

the number of pixels and the extent of the real-space
arrays

The maximum included scattering angle is the radius of the usable
portion of the reciprocal-space array after band width limiting.

N, N, Array dimensions 512 pixels

n,,n, Number of unit cells 6 cells

X, Y Real-space array extent 352A

X/N,, Y/N, Real-space array resolution 0-069 A

AN/ X, AN,/ Y Reciprocal-space array extent 538 mrad

A/X, AY Reciprocal-space array 1-05 mrad
resolution

A/3min(N,/X, N,/Y) Maximum included scattering 179 mrad
angle

displayed, I', is related to the original intensity, I, by
I'(k) =1n [1+ CI(k)/ Ina], (10)

where k represents the scattering angle and C = 3000
was arbitrarily chosen as aesthetically pleasing. The
calculated CBED patterns have also been clipped so
that a close up of the most interesting portion of the
pattern is displayed.

A related sampling issue is whether the number of
different slice transmission functions is large enough
so that the shortcut (described above) is valid. To
test the shortcut validity, identical calculations of
indium phosphide were performed with sets of 1, 2
and 4 slices which differed only in their random
atomic displacements. To the level of accuracy pro-
vided by 64 phonon configuration ensembles, there
is no difference between using one slice transmission
function and four. This result is not surprising since
each slice contains 6 X6 zinc-blende unit cells for a
total of 72 equivalent sites per slice, which should be
enough instances to represent a Gaussian distribution
of atomic displacements. The effort to calculate four
slices is relatively small and as long as they all fit in
computer memory at once there is no additional cost
in using four. Throughout this paper, we have used
four slices (288 equivalent sites) in a random stacking
sequence with random horizontal shifts to produce
all the phonon configurations in the ensemble.

As in any multislice calculation, the slice
dimensions in pixels and angstrdms must be chosen
carefully. These choices dictate the extent (array size)
and resolution (pixel size) of the calculation in posi-
tion (real space) and scattering angle (reciprocal
space) as summarized by the relations in Table 1. The
reciprocal-space array must be densely sampled to
represent adequately the fine structure of the CBED
pattern and large enough to include the TDS and
HOLZ ring after bandwidth limiting (Loane, Kirk-
land & Silcox, 1988). These conflicting requirements
result in a large number of pixels and therefore long
calculation times. A single 512 x 512 pixel slice takes
~2s to calculate on a Convex 210 minisupercom-
puter. Therefore, a 400 slice standard multislice calcu-
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lation takes ~13 min to calculate and a 16 configur-
ation frozen phonon calculation takes ~3-5 h.

We have used a variety of 111/V compounds* and
silicon in the (100) orientation in our calculations.
These specimens all have the same zinc-blende struc-
ture and nearly identical lattice parameters, so one
sampling test should apply to all. To test whether the
slice dimensions were sufficient, 6 X 6 unit-cell calcu-
lations at 512x 512 pixels were compared to 9x9
unit-cell calculations at 1024 x 1024 pixels which have
larger extent and resolution in both real and
reciprocal space. Calculations were performed with
587 A (400 slices) of untilted indium phosphide (100).
The indium r.m.s. atomic displacement was 0-10 A
and the phosphorus displacement was 0-192 A. The
incident probe modeled the Cornell VG-HB501
STEM (100 keV) with the low-resolution pole piece
(C;,=3-3mm) at Scherzer focus (a,,=8-18 mrad,
4Af=1105 A). To the level of accuracy provided by
64 phonon configurations in the ensemble, there was
no difference between the two calculations for scatter-
ing angles up to 160 mrad. Scattering in the range of
160 mrad to the bandwidth limit at 179 mrad was
underestimated by the smaller calculation.

Finally, the slice thickness must be sufficiently thin
to be accurately treated as a phase object and to
represent correctly the three-dimensional structure
information in the HOLZ rings. All calculations pres-
ented in this paper were performed with four slices
per zinc-blende unit cell. Each of these extremely thin
slices, <1-5 A, contains only one plane of atoms.

(5) Calculation results

Calculations were performed to explore the effects of
varying the thermal vibration amplitude. We expect
the intensity of the Bragg scattering to decrease by a
Debye-Waller factor as the amount of thermal vibra-
tion is increased. Calculated CBED patterns in Fig.
3 show that the intensity lost from the Bragg scattering
creates a TDS background. Scattered intensities as a
function of scattering angle for the same thicknesses
are plotted in Fig. 4. These curves are the result of
azimuthal integrations around circles of constant |k|
in the CBED patterns of Fig. 3 and provide a more
quantitative view of the same data.

Without vibrations, there is essentially no scattering
between the low-order Bragg beams and the HOLZ
ring. As the amount of vibration is increased, intensity
is shifted out of both the HOLZ ring and the low-order
Bragg beams and into the TDS background. The r.m.s.
atomic displacement for silicon is about 0-07 A at
room temperature (International Tables for X-ray
Crystallography, 1974a). At large vibration ampli-
tudes, 0-15 A, the HOLZ ring completely disappears.
As the amount of vibration increases, the low-order

* 3/5 compounds in IUPAC (1990) nomenclature.
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Fig. 2. Phonon configuration series of CBED calculations performed for a 273 A (200 slices) thick specimen of untilted gallium
phosphide (100). The number of phonon configurations averaged were (a) 1, (b) 4, (¢) 16 and (d) 64. The slice dimensions were
512x 512 pixels and 6 x 6 unit cells, which is 32:7x32:7 A. The gallium r.m.s. atomic displacement was 0-08 A and the phosphorus
displacement was 0-12 A. The incident probe modeled the Cornell VG-HB501 STEM (100 keV) with the low-resolution pole piece
(C;=3-3mm) and a small objective aperture (a,,=6-0 mrad) near optimum focus (4f = 600 A).

Fig. 3. Vibration series of CBED calculations performed for a 407 A (300 slices) thick specimen of untilted silicon (100). The r.m.s.
vibration amplitudes were (a) 0-00, (b) 0-03, (¢) 0-07 and (d) 0-15 A. Each pattern is the ensemble average of 16 phonon configurations.
The slice dimensions were 512x 512 pixels and 6 x6 unit cells, which is 32:6x32-6 A. The incident probe modeled the Cornell
VG-HB501 STEM (100 keV) with the low-resolution pole piece (C; =3-3 mm) at Scherzer focus (a,, =818 mrad, 4/ =1105 A).

[to face page 272
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Fig. 5. Thickness series of CBED calculations performed for a i{wecimen of untilted silicon (100). The specimen thicknesses were
multiples of 100 slices: (a) 136, (b) 272, (c) 407 and (d) 543 A. The r.m.s. vibration amplitude was 0-07 A. Each pattern is the
ensemble average of 16 phonon configurations. The slice and probe parameters were as for Fig. 3.

Fig. 8. Comparison of experimental and calculated silicon (100) CBED. Patterns (a) and (b) are low- and high-angle experimental
patterns, (c) was calculated with the standard multislice algorithm and (d) was calculated with the frozen phonon algorithm. The
standard calculation was generated for a 299 A (220 slices) thick specimen. The frozen phonon calculation is the ensemble average
of 64 phonon configurations and was generated for a 326 A (240 slices) thick specimen and a 0-085 A r.m.s. vibration amplitude.
Both calculated patterns were convolved with a small collector aperture function (1-6 mrad). The incident probe modeled the Cornell
VG-HB501 STEM (100 keV) with the low-resolution pole piece (C, =3-3 mm) near Scherzer focus (a,,=7-5mrad, Af =1100 A).
The slice parameters were as for Fig. 3.
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Fig. 10. Additional comparisons of experimental and calculated silicon (100) CBED for different specimen thicknesses. Patterns (a),
(c¢) and (e) form one comparison for an estimated thickness of 217 A (160 slices) and (b), (d) and (f) form another for a thickness
of 543 A (400 slices). Patterns (a) and (b) are low-angle experimental patterns, (c) and (d) are high-angle experimental patterns and
(e) and (f) were calculated with the frozen phonon algorithm. The calculation parameters were as for Fig. 8.
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Bragg beam intensity decreases slightly but the
weakest beams are lost in the TDS background. The
distinctive features in the low-order Bragg-beam discs
change slightly with increasing vibration amplitude,
consistent with a small lengthening of effective extinc-
tion distances. The relatively small change in the
low-angle scattering is encouraging since multislice
calculations without thermal vibrations have been
used to model TEM for many years.

Calculations were performed to explore the effects
of varying the specimen thickness. As the specimen
thickness is increased, the fraction of intensity in the
TDS background rises. Calculated CBED patterns in
Fig. 5 show the intensity distribution at a variety of
specimen thicknesses. The azimuthal integrations
plotted in Fig. 6 provide a more quantitative view of
the same data.

Faint Kikuchi bands can be seen in the TDS back-
ground, presumably due to phonon scattering
coupled with Bragg scattering (Kikuchi, 1928;
Kainuma, 1955; Takagi, 1958). This calculation
should include multiple Bragg and TDS scattering to
all orders. As the atomic vibration amplitude is
increased, the bands become more prominent and
elaborate, but at large vibrations the fine structure
fades away. The Kikuchi bands also become more
intense and elaborate with specimen thickness,
duplicating structures produced by increased vibra-
tion at smaller thicknesses. Therefore, the Kikuchi
band structure is an ambiguous measure of the speci-
men thickness or r.m.s. vibration amplitude.

The intensity in both the TDS background and the
HOLZ ring increases with thickness, but their ratio
remains roughly constant (Fig. 6). This ratio is very
sensitive to the amount of vibration (Fig. 4). The
features that depend most strongly on thickness are
the peaks and valleys in the low-order Bragg beams
(Fig. 5). These features are relatively insensitive to
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Fig. 4. Logarithm of scattered intensity. The curves were deter-
mined by azimuthally integrating the intensities of CBED pat-
terns similar to those shown in Fig. 3, but with different vibration
amplitudes. The r.m.s. vibration amplitudes were (a) 0-00, (b)
0-05 and (c) 0-10 A.
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the amount of vibration (Fig. 3). In a comparison of
experimental and calculated CBED patterns, it
should be possible to determine the experimental
r.m.s. vibration, almost independently of thickness,
from the ratio of the TDS to HOLZ intensity. It should
also be possible to determine the specimen thickness,
almost independently of vibration amplitude, from
the low-order Bragg beam features.

One quantitative test of the algorithm and our
implementation was to check whether the calculation
produced the expected Debye-Waller factors. In the
kinematic limit, the Bragg scattering of a monatomic
crystal in the presence of thermal vibrations should
decrease by a Debye-Waller factor

1(k) = Io(k) exp (—47°k* U 1my), (11)

where I is the intensity scattered by a perfect (not
vibrating) crystal. In frozen phonon calculations, the
Debye-Waller factor should arise automatically from
the random atomic displacements. The intensity in
the HOLZ ring, k =3-15 A™' = 117 mrad, is kinematic
scattering for the thicknesses considered here. As a
test of the calculation validity, the integrated HOLZ
intensity was separated from the TDS background
for a variety of vibration amplitudes and specimen
thicknesses. As shown in Fig. 7, the HOLZ intensity
in the frozen phonon calculations follows the Debye-
Waller factor of (11) within an absolute error of 2%
for thicknesses up to 543 A and r.m.s. vibrations up
to 0-10 A. The perfect-crystal intensity, I,, varies with
specimen thickness and was the only free parameter
in this fit.

(6) Experimental details

Experimental CBED patterns and electron energy
loss spectroscopy (EELS) spectra were taken with
a 100 keV VG-HB501 STEM with a low-resolution
pole piece (C, =3-3 mm) near Scherzer focus (Af =
1100 A, a,,=7-5 mrad). Probe widths between 3 and
10 A were typically achieved. The energy resolution
of the EELS spectra was <l eV.

The CBED patterns were taken by holding the
incident beam stationary and scanning the post-
specimen electron intensity over a small (1-6 mrad)
axial collector aperture. The detector was operated
in pulse-counting mode, which has demonstrated
single-electron counting, essentially no background,
large linear dynamic range and insensitivity to scintil-
lator degradation and afterglow. The detector signal
was accumulated into an image by a VAX 3200 work-
station (Kirkland, 1990) and stored on disk. This data
acquisition technique has the advantage of permitting
accurate absolute-intensity measurements over a
dynamic range of 10*, which was essential for a quan-
titative comparison. The disadvantage is that the field
of view is very limited and the signal-to-noise ratio
and resolution in the CBED patterns are not ideal.
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EELS spectra were taken from the same specimen
position as some of the CBED patterns. A large
(8-8 mrad) collector aperture was used to collect as
much plasmon scattering as possible. The detector
was again operated in pulse-counting mode and the
spectra stored on the computer.

The CBED pattern dimensions were 140Xx
130 mrad at 256 X 256 pixels. Since the patterns were
recorded serially, each pattern took 2:2 min to record
with dwell times of 2 ms pixel'. Though the Cornell
STEM is equipped with an energy spectrometer, it is
not possible to take energy-filtered CBED patterns
at this time (due to insensitivity in the Grigson coil
adjustment). Therefore, there is considerable inelasti-
cally scattered intensity, particularly plasmon losses,
present in the experimental CBED data. The EELS
spectra range was 50 eV at 250 pixels and included
the first (16-6 eV) and second (33 eV) silicon plasmon
loss peaks. Spectra took 2-1 min to record with dwell
times of 500 ms per pixel.

100

-
<

Log Intensity
—
)
®

10-3

0 30 60 90

120
Scattering Angle in mrad

150

Fig. 6. Logarithm of scattered intensity. The curves were deter-
mined by azimuthally integrating the intensities of the CBED
patterns shown in Fig. 5. The specimen thicknesses were (a)
136, (b) 272 and (c) 543 A.
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Fig. 7. Integrated HOLZ ring intensities for various specimen
thicknesses. The data points were determined by integrating the
HOLZ peak intensity, less the TDS background, in the curves
shown in Figs. 4 and 6. The specimen thicknesses were (a) 136,
(b) 272, (¢) 407 and (d) 543 A.
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Specimen drift of up to 10 A per minute can occur
and the beam occasionally drifted to thicker or tilted
regions. The action of changing from the small
(CBED) to large (EELS) collector aperture shook the
microscope slightly and also caused drift. Checks
were made to determine whether the specimen had
drifted during pattern and spectra acquisition. If so,
the data were discarded and the experiment repeated.

Multiple patterns and spectra were taken from the
same point to prove that contamination did not
seriously degrade the data. In the CBED pattern,
contamination slightly increased the low-angle diffuse
scattering. In the EELS spectra, contamination pro-
duced a small additional plasmon peak at roughly
22 eV. Neither of these effects changed the results of
our analysis.

Silicon specimens were thinned by grinding to
20 pm, ion milling until break through and dipping
in HF to remove as much of any oxide or amorphous
layers as possible. Ion milling was performed at
liquid-nitrogen temperatures with SkV Ar" ions and
an 18° incidence angle. The specimen was heated
under vacuum in the microscope preparation cham-
ber to drive off hydrocarbons and thereby minimize
contamination under the beam.

(7) Calculated and experimental CBED comparison

An extension of our previous approach (Kirkland,
Loane, Xu & Silcox, 1989) was used to match frozen
phonon CBED calculations to experiment. The
HOLZ to TDS intensity ratio and the features in the
low-order discs were used to make the comparison.
The match was performed with 64 configuration
calculations at steps in thickness of 27-:2 A (20 slices)
and steps in r.m.s. vibration amplitude of 0-01 A,
which set the error in the match to +14 A and
+0-005 A, respectively. The patterns changed sig-
nificantly with each step. Additional calculations with
smaller steps and more phonon configurations should
refine the match.

One comparison between experimental silicon
(100) CBED patterns, a frozen phonon calculation
and a standard multislice calculation is shown in Fig.
8. Note the close match between the frozen phonon
calculation and the experiment in the Kikuchi band
structure, the HOLZ ring intensity and the features
in the low-order Bragg-beam discs. The standard
multislice calculation only matches experiment in the
low-order Bragg beams.

The finite collector aperture width (1-6 mrad) blurs
the features of the experimental CBED patterns.
Before comparison to experiment, the calculated pat-
terns were also blurred by a convolution with a top-
hat function of the same diameter. The convolution
improved the match of the features in the low-order
Bragg beams and broadened the HOLZ ring but did
not change our estimate of the specimen thickness or
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r.m.s. vibration amplitude. Owing to an imbalance in
the strength of the Grigson X and Y scan coils, the
aspect ratio of experimental CBED patterns was off
by up to 8%. The distorted aspect ratio was considered
in all the subsequent analyses and has been corrected
in the figures.

The best fit for the frozen phonon calculation
shown in Fig. 8 occurred with a 0-085 (5) A r.m.s.
atomic displacement and 326 (14) A thickness. The
r.m.s. vibration is larger than the 0-07 A* expected
for room-temperature silicon and corresponds to a
temperature of 470 K [by assuming 0-07 A at 300 K
in (4)]. This discrepancy appears too large to be
attributed solely to beam heating of the specimen
(Reimer, 1984b). It seems more likely that inelastic
plasmon scattering, coupled with quasi-elastic and
Bragg scattering (Batson & Silcox, 1983), is being
included experimentally as additional TDS. An
attempt to test this hypothesis with energy-filtered
CBED is under way.

The best fit for the standard multislice calculation
shown in Fig. 8 occurred with a 299 (14) A thickness,
which is slightly thinner than the best-match frozen-
phonon calculation. The difference in thicknesses
arises from a reduction in the Bragg scattering in the
frozen-phonon calculation, due to the Debye-Waller
factor, which increases the extinction distances
responsible for the features in the low-order discs. If
we apply the Debye-Waller factor of (11) to just
the first-order Bragg (220) disc, k=0-52A7"'=
19-3 mrad, we estimate a lengthening of extinction
distances of about 7-5%. Since there is much multiple
scattering between low-order Bragg beams, each with
its own Debye-Waller factor, this estimate is very
crude but it does account for the observed thickness
difference.

The match to experiment is not perfect. Fig. 9 shows
a quantitative comparison between the azimuthally
integrated intensity in the experimental and frozen
phonon CBED patterns of Fig. 8. The vertical place-
ment of these curves is arbitrary since the incident-
beam curtrent is not known. The match at high scatter-
ing angles, >50 mrad, is very good. However, there
is more diffuse scattering spreading the intensity in
the experimental patterns at low angles than can be
accounted for by thermal vibrations. The extra low-
angle diffuse scattering can be attributed to scattering
by plasmons (Reimer, Fromm & Naundorf, 1990)
and possibly a thin oxide or contamination layer on
the specimen, neither of which was included in the
calculations. The faint broad bands running perpen-
dicular to the Kikuchi bands in the experimental
patterns may be the result of correlations between
the vibrations of neighboring atoms (Honjo, Kodera
& Kitamura, 1964; Komatsu & Teramoto, 1966),

* See Note added in proof on p. 277.
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which are neglected in the simple Einstein model
used here.

Many additional matches were made at a variety
of thicknesses. At no thickness did we notice any
significant discrepancy between calculation and
experiment other than the excess low-angle diffuse
scattering mentioned above. Fig. 10 shows two addi-
tional comparisons between experimental CBED pat-
terns and the appropriate frozen phonon calculations
for a thinner and a thicker region of the specimen.
Fig. 11 shows a more quantitative comparison of the
azimuthally integrated intensity in the experimental
and frozen phonon patterns in Fig. 10. The excess
low-angle diffuse scattering becomes less significant
as the thickness is increased, which suggests that an
amorphous layer on the specimen surface may be the
source. The best fit for the patterns shown in Fig. 10
occurred with exactly the same r.m.s. atomic displace-
ment, 0-085(5) A. The best-fit thicknesses were
217 (14) and 543 (14) A.

(8) Comparison to EELS

Since multiple plasmon scattering follows Poisson
statistics (Reimer, 1984a), the ratio of the EELS
spectrum intensity in the first plasmon-loss peak to
that in the zero-loss peak equals the ratio of the
specimen thickness to the plasmon mean free path
(MFP). Assuming the specimen thicknesses deter-
mined by CBED comparisons (as above) are correct,
it is possible to estimate an experimental value for
the plasmon MFP from the EELS spectra (Kirkland,
Loane, Xu & Silcox, 1989). A comparison of this
estimated MFP with other values in the literature
provides an independent check of the validity of the
frozen-phonon calculation.

EELS spectra were taken with an 8-8 mrad collector
aperture from the same positions as some of the

100 ) T T Ad T A
- Calculation Thickness: 326}
- _
g 107! 3
° TDS HOLZ Ring §
i )
Q0 4 -

10-2 E
3 E

]
10-3

0 30 60 90 120
Scattering Angle in mrad

Fig. 9. Comparison of experimental and calculated scattered
intensity. The curves were determined by azimuthally integrating
the intensities of (a) experimental and (b) frozen phonon CBED
patterns in Figs. 8(b) and (d), respectively. The vertical place-
ment of the curves is arbitrary.
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CBED patterns. Plasmon intensities were determined
from the spectra by integrating under the zero-loss
peak and first plasmon-loss peak at 16-6eV. The
plasmon intensity ratio versus the best-match thick-
ness determined from the CBED comparison is plot-
ted in Fig. 12. The slope of the straight-line fit indi-
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Fig. 11. Comparison of experimental and calculated scattered
intensity. The curves were determined by azimuthally integrating
the intensities of (a) experimental and (b) frozen phonon CBED
patterns in Figs. 10(c) through (f). The vertical placement of
the curves is arbitrary.
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determined by comparisons of experimental and calculated
CBED patterns similar to those shown in Figs. 8 through 11.
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cates that the plasmon MFPis 1207 (23) A. This value
agrees well with the experimental value of 1250 A
(8-5 mrad objective aperture, 10 mrad collector aper-
ture) (Sarikaya & Rez, 1982) and the theoretical result
of 1150 A (parallel illumination, 6-5 mrad collector
aperture) (Egerton, 1986). These numbers suggest
that the frozen phonon calculation determines the
correct specimen thickness to within the error of the
known value for the silicon plasmon MFP.

The fact that the straight-line fit does not go exactly
through the origin is not surprising, considering ran-
dom error in the data and the possible presence of
contamination, oxide or amorphous silicon layers on
the specimen (Carpenter & Jang, 1986). The fact that
the vertical axis intercept at 10(6) A is so close to
zero is a good indication that the specimen is almost
completely crystalline silicon.

Our previous match between silicon (111) CBED
and EELS (Kirkland, Loane, Xu & Silcox, 1989) did
not include a Debye-Waller factor. At that time we
were comparing the experimental CBED patterns to
the standard multislice calculation which, as shown
above, underestimates the specimen thickness. The
net result is a systematic error which overestimates
the plasmon MFP. If the previous plasmon MFP
result, 1297 (25) A (8 mrad collector), is reduced by
the crude estimate of 7-5% discussed above, the result,
1199 (23) A, agrees very well with our current work.

The EELS comparison points out that, for all but
the thinnest specimens, plasmon scattering is a sig-
nificant effect. For example, at the 326 A thickness
shown in Fig. 8, 24% of the intensity at small angles
has been scattered by plasmons. Since the CBED
patterns were not energy filtered, this plasmon scat-
tered intensity makes up a big fraction of the intensity
in the experimental CBED patterns above. Even
though plasmons scatter predominantly at small
angles, coupled plasmon/phonon and plas-
mon/Bragg scattering can translate inelastically
scattered electrons to large angles. To a first approxi-
mation, the plasmon scattering at large angles is pro-
portional to the TDS background (Batson & Silcox,
1983). This high-angle inelastic intensity is present in
the experimental CBED patterns but is neglected in
the calculations. Treating the high-angle inelastic
scattering as additional TDS may be the reason that
the estimated r.m.s. thermal vibration amplitude is
larger than expected.

(9) Discussion

The validity of the frozen phonon technique is
strongly supported by a comparison with experi-
mental silicon CBED patterns. This technique
naturally produces the Kikuchi band structure, TDS
intensity, Debye-Waller factor and lengthened
extinction distances, all of which are missing in the
standard multislice calculation. The agreement with
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experiment is good for a variety of specimen thick-
nesses over more than two orders of magnitude of
intensity, which is about the precision of the atomic
scattering factors. The best-fit r.m.s. vibration ampli-
tude was 0-085 (5) A for a variety of specimen thick-
nesses. This value is larger than the 0-07 A determined
at room temperature by X-ray scattering and may
represent the inclusion of coupled inelastic/ phonon
scattering as additional thermal vibration. There is
also additional low-angle diffuse scattering in the
experimental CBED, which may be the result of plas-
mon scattering or possibly a thin amorphous layer
on the specimen. The silicon plasmon mean free path
was estimated from the EELS spectra using the calcu-
lation to determine specimen thickness. Comparison
with mean-free-path results in the literature indicates
that the frozen phonon calculation is accurate to
within the error in the known value of the plasmon
mean free path.

The frozen phonon calculation is based on a rela-
tively slight modification to the well established multi-
slice algorithm. The Monte Carlo integration closely
matches the physical process of electron scattering
where millions of single electron diffraction patterns
are summed incoherently to produce the average
CBED pattern. Multiple thermal diffuse and Bragg
scattering to all orders is automatically included in
this calculation. Agreement with experiment indicates
that appropriate random displacements of the atomic
potentials produces a valid representation of the ther-
mal equilibrium potential.

The frozen phonon technique is an alternative route
to the prediction of scattered intensities in the pres-
ence of thermal vibrations, particularly at large
angles. A numerically intensive calculation, based on
a simple first-principles model, replaces more-compli-
cated analytical treatments. Thus, this technique pro-
vides an independent check of the validity of the
elaborate chain of approximations present in more
analytical approaches. As computational capabilities
continue to increase, the shift from complicated
analysis to numerically intensive first-principles
models becomes more desirable.

A primary motivation for developing this technique
was to provide an improved theoretical basis for the
calculation of ADF STEM images. At room tem-
perature, TDS makes up most of the scattering in the
range of angles which contribute to the ADF STEM
signal. Even at temperatures near absolute zero, there
is still significant vibration and TDS from the crystal
zero-point energy. The frozen phonon calculation
matches experiment very closely in the TDS, which
justifies its use in the calculation of ADF STEM
images. Since the ADF STEM signal is not usually
energy filtered, the use of a larger r.m.s. thermal
vibration may be an effective means of including
inelastic scattering in ADF STEM calculations. The
presence of strong TDS at lower scattering angles
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suggests that an inner ADF detector radius as small
as 30 mrad may be best. Additional quantitative pre-
dictions of the dependence of Z contrast on specimen
thickness, defocus, objective aperture choice and
detector geometry will be determined.

Special thanks to E. J. Kirkland for his implementa-
tion of the original multislice simulation and the
STEM data acquisition system, to J. Krumhansl for
his helpful discussion of frozen phonons and to M.
Thomas for keeping the STEM working. This research
was supported by the Department of Energy
(DEFG0287ER45322). Calculations were performed
at the Cornell Material Science Center computer
facility. Funding for the purchase (DMR-8314255)
and operation (DMR-8516616) of the UHV STEM
was provided by the National Science Foundation.

Note added in proof

Recent experiments and a better background treat-
ment have yielded an improved estimate for the
silicon r.m.s. vibration amplitude of 0-080(5) A. This
new estimate agrees with the extremely accurate X-ray
measurement of 0-0764(2) A by Aldred & Hart
(1973).
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On the Application of Phase Relationships to Complex Structures. XXIX.
Choosing the Large E's
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Abstract

The set of large E's through which a structure is solved
by direct methods is usually chosen by a convergence
or convergence-divergence process. This process
aims to give a strong phase-extension pathway start-
ing from a small set of Es whose phases are known
or allocated in some way. Sometimes sets of reflexions
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thus obtained are poorly conditioned and under
tangent-formula refinement even initially correct
phases will degenerate to randomness. A simple new
algorithm has been developed which improves the
conditioning of the complete set of reflexions and
their relationships and is more appropriate to current
trends to start refinement from a complete set of
random phases. A particular feature of this algorithm
is that it maximizes the minimum number of relation-
ships for any reflexion.
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